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Summary
I Our challenge: nonlinear applications modelled by optimization problems

with singularities in the Hessian due to a L1-norm type term in the objective.

I Hessian exhibits a null space upon linearization with Newton’s method that
is problematic for convergence.

I Applications include inverse problems with total variation regularization as
well as viscoplastic flows like Earth’s mantle convection.

I We analyze issues with the standard Newton linearization through numeri-
cal experiments and theoretically in an abstract setting.

I We propose an improved linearization based on a perturbation of an other-
wise implicitly assumed equality constraint.

I We achieve robust and fast Newton convergence independent of the dis-
cretization. We further show advantageous theoretical properties of the
new linearization.

Introduction in 1 Dimension
Minimization problem Given constants a > 0, b ∈ R, and 0 ≤ θ ≤ 1,

find minimizer x∗ ∈ R of min
x∈R

J(x) :=
a

1 + θ
|x|1+θ

ε − bx

Denote |x|ε := (|x|2 + ε2)1/2. Note that the parameter θ controls the nonlinearity
such that Newton’s method converges well for θ = 1; and Newton’s method
converges poorly for θ → 0. The gradient and Hessian of J(x) are

g(x) := J ′(x) =
ax

|x|1−θε

− b, H(x) := J ′′(x) =
a

|x|1−θε

(
1− (1− θ)

x2

|x|2ε

)
.

Standard Newton linearization One Newton step (simplified, e.g., without
backtracking line search) is

solve for x̂ in H(x) x̂ = −g(x), update x← x + x̂,

therefore, we need to solve the linearized equation

a

|x|1−θε

(
1− (1− θ)

x2

|x|2ε

)
x̂ = −

(
ax

|x|1−θε

− b

)
(standard Newton step)

Perturbed Newton linearization Define for x, y ∈ R

model error: E(x, y) :=
x

|x|1−θε

− y,

model perturbation: D(x, y) := x− |x|1−θε y.

The perturbed Newton linearization for x̂ and ŷ assumes D(x, y) 6= 0, then

aŷ = − (ay − b) ,(
1− (1− θ)

xy

|x|1+θ
ε

)
x̂− |x|1−θε ŷ = −

(
x− |x|1−θε y

)
.

Substituting for ŷ gives the perturbed and reduced Newton linearization for x̂

a

|x|1−θε

(
1− (1− θ)

xy

|x|1+θ
ε

)
x̂ = −

(
ax

|x|1−θε

− b

)
(improved Newton step)

Magnitude of perturbed gradient
(colors)

Directions of perturbed gradient
(arrows)

The magenta curve in both plots represents the (absolute value of) the un-
perturbed gradient g(x) in (x, y)-space, meaning E(x, y) = 0. Introducing the
perturbation, D(x, y) 6= 0, relaxes the rapid changes of the unperturbed g(x)
around x = 0.

Abstract Derivation of
Perturbed Newton Linearizations

Minimization problem Given dimensions d ∈ N and n ∈ {1, d, d× d}, domain
Ω ⊆ Rd, and a linear and bounded functional F : L2(Ω)n → R,

find minimizer U ∗ : Ω→ Rn of min
U
J(U) :=

∫
Ω

Φ(U)− F (U)

using a generalization of the Huber loss:

Φ(U) :=


1

2
α |U |2 + β, α |U | ≤ δ,

δ |U | − 1

2

δ2

α
+ β, otherwise,

with parameters α, δ > 0 and β ∈ R.
x

Φ(x)

β

δ2

2α + β

δ
α

Standard Newton linearization The gradient and Hessian are the 1st- and
2nd-order variations of J :

g(U)Ũ :=

∫
Ω

(
χα + (1− χ)

δ

|U |

)〈
U , Ũ

〉
− F (Ũ), χ :=

{
1, α |U | ≤ δ,

0, o.w.,(
H(U)Û , Ũ

)
:=

∫
Ω

(
χα + (1− χ)

δ

|U |

(
I− U ⊗ U

|U |2

))〈
Û , Ũ

〉
.

The standard Newton linearization requires to solve for Newton step Û in∫
Ω

(
χα + (1− χ)

δ

|U |

(
I− U ⊗ U

|U |2

))〈
Û , Ũ

〉
= −g(U)Ũ

The outer product term is computationally challenging because:

I Coefficient
(
I− U⊗U

|U |2

)
in Hessian represents an orthogonal projector.

I Hessian has a zero eigenvalue associated to eigenvector (1− χ)U .

Perturbed Newton linearization Define for U, S ∈ L2(Ω)n

model error: E(U, S) :=
U

|U |
− S,

model perturbation: D(U, S) := U − |U |S.

We augment the previous gradient by a model perturbation, D(U, S) 6= 0,

g(U, S)Ũ =

∫
Ω

〈
χαU + (1− χ)δS , Ũ

〉
− F (Ũ),(

D(U, S) , S̃
)

=

∫
Ω

〈
U − |U |S , S̃

〉
,

to get the perturbed Newton linearization for step (Û , Ŝ)∫
Ω

〈
χαÛ + (1− χ)δŜ , Ũ

〉
= −g(U, S)Ũ ,∫

Ω

〈(
I− U ⊗ S

|U |

)
Û − |U | Ŝ , S̃

〉
= −

(
D(U, S) , S̃

)
.

Here, the dual step has the explicit expression

Ŝ =
U

|U |
− S +

1

|U |

(
I− U ⊗ S

|U |

)
Û .

Therefore, substitution leads to the perturbed and reduced Newton linearization
for Û , where only the outer product term of the Hessian has changed compared
to the standard linearization:∫

Ω

(
χα + (1− χ)

δ

|U |

(
I− U ⊗ S

|U |

))〈
Û , Ũ

〉
= −g(U)Ũ

Improvements gained from perturbation
I Perturbation results in model error dependent regularization:

I− U ⊗ S
|U |

= I− U ⊗ U
|U |2

+
U ⊗ E(U, S)

|U |
.

I Perturbed linearization acts as a nonlinear preconditioner far from the solution
while enabling fast Newton convergence close to solution, since

I− U ⊗ S
|U |

→ I− U ⊗ U
|U |2

as E(U, S)→ 0.

I The explicit expression of Ŝ enables a simple and computationally cheap
update of the dual variable S after computing step Û :

S ← S + Ŝ =
U

|U |
+

1

|U |

(
I− U ⊗ S

|U |

)
Û .

Image Restoration with Total Variation (TV)
True image Noisy image Restored image

A true image is generated (left), to which Gaussian noise with standard deviation
σ = 0.2 is added (middle). The noisy image serves as input data to the image
restoration problem with the result shown right.

Minimization problem Given blurry and noisy image data, d : (0, 1)2 → R, the
blurring operator, B : L2(Ω)→ L2(Ω), Ω = (0, 1)2, and the total variation operator

Φ(∇u) =


1

2ε
|∇u|2 , |∇u| ≤ ε,

|∇u| − ε

2
, otherwise,

with Huber parameters α = 1/ε, δ = 1, β = 0, where 0 < ε� 1; consider

find minimizer u∗ : (0, 1)2 → R of min
u
J(u) :=

1

2
‖Bu− d‖2

L2 + γ Φ(∇u)

Note: The regularization with Φ(∇u) has the advantage of preserving edges
in the restored image u∗. The parameters ε > 0 and γ > 0 regularize the TV
operator and the image restoration problem, respectively.

Standard Newton linearization The 1st- and 2nd-order variations of Φ(∇u) are

δu[Φ(∇u)](ũ) =

∫
Ω

(
χ

ε
+

(1− χ)

|∇u|

)
∇u · ∇ũ,

δuδu[Φ(∇u)](ũ)(û) =

∫
Ω

(
χ

ε
+

(1− χ)

|∇u|

(
I− ∇u⊗∇u

|∇u|2

))
∇û · ∇ũ.

The standard Newton linearization requires to solve for Newton step û in

−∇·
[
γ

(
χ

ε
+

(1− χ)

|∇u|

(
I− ∇u⊗∇u

|∇u|2

))
∇û
]

+B∗Bû = −γδu[Φ(∇u)]−B∗(Bu−d)

The left-hand side constitutes a Poisson operator with an anisotropic 2nd-order
tensor coefficient.

Perturbed Newton linearization Define for u ∈ L2(Ω), S ∈ L∞(Ω), ‖S‖L∞ ≤ 1

model error: E(u, S) :=
∇u
|∇u|

− S,

model perturbation: D(u, S) := ∇u− |∇u|S.

The perturbed and reduced Newton linearization for û is the system

−∇·
[
γ

(
χ

ε
+

(1− χ)

|∇u|

(
I− ∇u⊗ S

|∇u|

))
∇û
]

+B∗Bû = −γδu[Φ(∇u)]−B∗(Bu−d)

Numerical experiments Comparison of Newton convergence with standard
and perturbed linearizations using parameters ε = 0.01, γ = 0.002, and added
Gaussian noise to the true image with standard deviation σ = 0.2.

Comparison of Newton convergence with different linearizations
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Viscoplastic Stokes Flow
Motivated by rheology of Earth’s mantle convection with plate tectonics:

Effective viscosity field (colors) and viscoplastic dynamic weakening of litho-
sphere in hinge zone (right zoom). (Visualization by L. Alisic)

Minimization problem Given viscosity µ > 0, yield strength τyield > 0, the 2nd

invariant of the strain rate tensor, ε̇II := 1√
2
|∇su| with ∇su := 1

2(∇u +∇uT), and

Φ(2ε̇II) =


µ

2
(2ε̇II)

2 +
1

2

τ 2
yield

µ
, µ(2ε̇II) ≤ τyield,

τyield(2ε̇II), otherwise,

with Huber parameters α = µ, δ = τyield, β = 1
2
δ2

α = 1
2

τ2
yield

µ ; consider

find minimizer u∗ : (0, 1)3 → R3 of min
u
J(u) :=

∫
Ω

Φ(u)−f ·u s.t. ∇·u = 0

Standard Newton linearization Solve for Newton step (û, p̂) in

−∇ ·
[

2

(
χµ + (1− χ)

τyield√
2 |∇su|

(
I− ∇su⊗∇su

|∇su|2

))
∇sû

]
+∇p̂ = −rmom

−∇ · û = −rmass

The residuals of the nonlinear Stokes momentum and mass equations appear
on the right-hand side. What plays the role of viscosity in the Newton step is an
anisotropic 4th-order tensor.

Perturbed Newton linearization Define for u ∈ H1(Ω)d and S ∈ L∞(Ω)d×d,
‖S‖L∞ ≤ 1

model error: E(u,S) :=
∇su

|∇su|
− S,

model perturbation: D(u,S) := ∇su− |∇su|S.

The perturbed and reduced Newton linearization of the momentum equation is

−∇ ·
[

2

(
χµ + (1− χ)

τyield√
2 |∇su|

(
I− ∇su⊗ S

|∇su|

))
∇sû

]
+∇p̂ = −rmom

Numerical experiments Comparison of Newton convergence with standard
and perturbed linearizations using a model problem with a viscosity that incorpo-
rates low-viscosity plumes in a high-viscosity background medium,

µ(x) := (µmax − µmin)(χn(x)− 1) + µmin, x ∈ (0, 1)3,

where χn(x) ∈ [1, 2] are C∞ indicator functions, which accumulate n plumes via
products of Gaussians.

Yielding Mesh Standard Newton Perturbed Newton
volume level ` It. Newton #backtr. It. GMRES It. Newton #backtr. It. GMRES

∼45% 4 33 20 1469 10 0 379
∼45% 5 36 25 2255 12 0 664
∼45% 6 57 49 4255 13 0 876

∼65% 4 29 21 1559 18 10 965
∼65% 5 37 26 2464 17 9 1245
∼65% 6 48 39 3892 20 9 1707

∼90% 4 35 25 1505 19 11 872
∼90% 5 40 32 2147 21 11 1267
∼90% 6 32 21 2312 23 11 1811
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